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Abstract. We apply Soft-Collinear Effective Theory to prove at leading power in ΛQCD/mb a factorization
formula for the radiative leptonic decay B → γlν. Large logarithms entering the hard-scattering kernel are
systematically resummed by a two-step perturbative matching procedure.

1 Introduction

One of the main goals in today’s B physics is to under-
stand exclusive B decays in order to perform accurate
CKM studies and New Physics searches. Major steps in
this direction were taken recently using heavy-quark ex-
pansions. The QCD factorization formalism [1] allows in
the heavy-quark limit mb � ΛQCD a separation of per-
turbatively calculable hard-scattering kernels from non-
perturbative form factors and universal light-cone distri-
bution amplitudes. The “Soft-Collinear Effective Theory”
(SCET) [2] for the strong interactions of collinear and soft
particles allows us to better understand the factorization
properties of hard exclusive processes and eventually rigo-
rously prove the corresponding factorization theorems. In
particular for hadronic and radiative B-meson decays into
light particles a challenge is to understand the interactions
of collinear particles with the soft spectator quark inside
the B meson which gives rise to convolutions of hard-
scattering kernels with the B-meson light-cone distribu-
tion amplitude (LCDA). A systematic analysis of these
interactions in the framework of SCET has recently been
performed in [3].

The decay B → γlν provides a particularly clean en-
vironment for the study of soft-collinear interactions be-
cause no hadrons are present in the final state yet the light-
cone structure of the B meson is probed by the coupling of
the high-energy photon to the soft spectator quark inside
the B meson. Furthermore, three mass scales are involved
in the process which lead to Sudakov logarithms. We use
the formalism of [3] to prove a factorization formula for
B → γlν and systematically resum the large Sudakov lo-
garithms. Related work on B → γlν was presented at this
conference by Descotes-Genon and Lunghi [4]. We present
our results of [5]. Other aspects are discussed in [6].

2 Soft-Collinear Effective Theory

SCET is an effective field theory of collinear particles in-
teracting with soft degrees of freedom. It borrows ideas

from HQET, NRQCD, and collinear effective theory and
is based on the method of regions, i.e. leading regions cor-
respond to effective fields. Fluctuations with p2 � Q2 �
Λ2

QCD are integrated out and appear in Wilson coefficients
whereas those with p2 � Q2 appear in time-ordered pro-
ducts of effective theory fields. The main advantage of an
effective field theory approach is that symmetries of the
theory are explicit at the level of the Lagrangian, which
simplifies factorization proofs.

In the formulation of SCET by Hill and Neubert [3],
soft and collinear fields appear as gauge-invariant buil-
ding blocks living on light-like trajectories. These building
blocks absorb the SCET Wilson lines such that gauge in-
variance is no longer a constraint on the form of the SCET
operators. Yet, reparameterization invariance [7] gives po-
werful constraints.

3 The factorization formula and its proof

For a high-energy photon with Eγ = O(mb) we have the
factorization formula [4,5]

A(B− → γ l−ν̄l) (1)

∝ mBfB Qu

∫ ∞

0
dl+

φB
+(l+, µ)

l+
T (l+, Eγ , mb, µ)

where Qu = 2
3 is the electric charge of the up-quark , fB is

the B-meson decay constant, φB
+ is a leading-order LCDA

of the B-meson, and T = 1+O(αs) is a perturbative hard-
scattering kernel. The physics underlying the factorization
formula is that a high-energy photon coupling to the soft
constituents of the B-meson produces quantum fluctuati-
ons far off their mass shell, which can be integrated out
in a low-energy effective theory.

Let us briefly sketch the four ingredients of the proof of
(1) to all orders in perturbation theory. We match the full
theory amplitude onto the unique set of gauge-invariant
SCET operators that mediate this decay and that are allo-
wed by reparameterization invariance. Then we show that
(see [5] for further details)
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– The decay amplitude can be, at leading power, expres-
sed in terms of a convoution with the B meson LCDA
because the component field of the effective operators
have light-like separation.

– The hard scattering kernel is free of infrared divergen-
ces to all orders in perturbation theory because it is a
SCET Wilson coefficient.

– The convolution integral of the hard-scattering kernel
with the B-meson LCDA is convergent using repara-
meterization invariance arguments.

– Non-valence Fock states give no leading-power contri-
butions because additional soft gluon fields are either
power suppressed or vanishing.

4 Hard-scattering kernel and resummation

Because the hard-scattering kernel is a SCET Wilson coef-
ficient we calculate it by a matching procedure. To next-to
leading order in QCD we find

T (l+, Eγ , mb, µ) = 1 +
CF αs(µ)

4π

[
− 2 ln2 2Eγ

µ
− π2

4
(2)

+ ln2 2Eγ l+
µ2 − xγ lnxγ

1 − xγ
+ 2 ln

2Eγ

µ
− 2L2(1 − xγ) − 5

]

T contains large logarithms which cannot be made small
simultaneously for any choice of µ. However, we can re-
sum these large logarithms using a two-step matching onto
SCET. In a first step the O(m2

b) off-shell fluctuations of
the b quark are integrated out by matching onto HQET.
This yields a hard function H. Hard-collinear modes with
momenta scaling like (k+, k−, k⊥) ∼ (Λ, mb,

√
mbΛ) are

integrated out in a second step and lead to the jet function
J . We thus find a second stage of perturbative factoriza-
tion of the hard scattering kernel

T (l+, Eγ , mb, µ) = H

(
2Eγ

µ
,
2Eγ

mb

)
· J

(
2Eγ l+

µ2

)
(3)

where, at NLO,

H

(
2Eγ

µ
, xγ

)
= 1 +

CF αs(µ)
4π

[
− 2 ln2 2Eγ

µ
+ 2 ln

2Eγ

µ

−xγ lnxγ

1 − xγ
− 2L2(1 − xγ) − 4 − π2

12

]

J

(
2Eγ l+

µ2

)
= 1 +

CF αs(µ)
4π

(
ln2 2Eγ l+

µ2 − 1 − π2

6

)

We actually performed the matching diagrammatically
and determined H simply by setting the soft spectator
momentum in the B meson l = 0. The jet function then
followed from the ratio J = T/H.

To get the renormalization group equation for T we
use the scale independence of the total amplitude and the
renormalization properties of the LCDA φB

+(ω, µ) to get
the integro-differential equation [8]

d

d lnµ
T (l+, µ) =

[
Γcusp(αs) ln

µ

l+
+ γ(αs)

]
T (l+, µ)

+
∫ ∞

0
dω l+ Γ (ω, l+, αs) T (ω, µ)

where Γcusp is the universal cusp anomalous dimension
familiar from the theory of the renormalization of Wilson
loops [9]. Its appearance is due to the fact that a B meson
can be described by a Wilson line Sn(z, 0)Sv(0, −∞) with
a cusp singularity at the origin which gives rise to one
factor of Γcusp [8].

From the factorization property of the hard-scattering
kernel exhibited in (3) and the functional forms of the
hard and jet functions given above, it follows that the hard
component and the jet function obey the RG equations

d

d lnµ
H(µ) =

[
−Γcusp ln

µ

2Eγ
+ γ(αs) − γ′(αs)

]
H(µ)

d

d lnµ
J(l+, µ) =

[
Γcusp ln

µ2

2Eγ l+
+ γ′(αs)

]
J(l+, µ)

+
∫ ∞

0
dω l+ Γ (ω, l+, αs) J(ω, µ)

where explicit expressions for Γ , γ, and γ′ can be found in
[5]. The reasoning in deriving the RG equations for H and
J is analogous to an argument presented by Korchemsky
and Sterman in their discussion of the B → Xsγ photon
spectrum [10]. We note that only a single logarithm of
µ/2Eγ appears in the RG equations so that it is possible
to integrate them. Furthermore the coefficient of the lo-
garithm is the cusp anomalous dimension which is known
to two-loop order. This allows for the resummation of Su-
dakov logarithms at NLO.

To perform the Sudakov resummation we first calcu-
late the hard function H(µh) at a high scale µh ∼ mb using
fixed-order perturbation theory. At this scale no large lo-
garithms are present. Solving the RGE for H we can evolve
H(µ) down to an intermediate scale µi ∼ √

mbΛ and mul-
tiply it by the result J(l+, µi) for the jet function. Again,
no large logarithms appear and we get the kernel T (l+, µi)
at the intermediate scale. Finally, we solve the RGE for
T and compute the evolution down to a low-energy scale
µ ∼ few × ΛQCD. The exact solution for the resummed
kernel is given by

T (l+, µ) = H(µh) J[αs(µi), ∇η] exp U(l+, µ, µi, µh, η)
∣∣∣
η=0

where we refer to [5] for the definition of J[αs(µi), ∇η] and
the explicit expression for the evolution function U .

In order to study the importance of RG improvement
and Sudakov resummation, we compare in the left-hand
plot in Figure 1 the result for the resummed hard-scat-
tering kernel at maximal photon energy Eγ = mb/2 with
the one-loop approximation in (2). We plot the function
T (l+, µ = 1GeV) for different choices of the matching sca-
les µi (different bands) and µh (width of bands). The
dashed line shows the result obtained at one-loop order
without resummation. We find that resummation effects
decrease the magnitude of the radiative corrections, i.e.,
the resummed kernel is closer to the tree-level value T = 1
than the one-loop result. Our results are stable under the
variation of µi and µh.
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Fig. 1. RG-improved predictions for the hard-scattering kernel at maximum photon energy and the convolution integral I(Eγ).

The scale dependence of the resummed expression for
the kernel is illustrated in the middle plot in Figure 1,
which shows the functional dependence of T (l+, µ) for ma-
ximal photon energy and several values of µ. The matching
scales are set to their default values µh = mb = 4.8 GeV
and µi =

√
Λhmb 	 1.55 GeV. We observe a significant

scale dependence of the kernel, especially as one lowers µ
below the intermediate scale µi. In other words, the second
stage of running (for µ < µi) is numerically significant.

Finally, the right-hand plot in Figure 1 shows the re-
summation effects for the convolution integral

I(Eγ) =
∫ ∞

0
dl+

φB
+(l+, µ)

l+
T (l+, Eγ , mb, µ)

in units of its tree-level value I0 = 1/λB for three different
values of the hadronic scale µ0 at which we assumed the
following particular form of the LCDA

φB
+(l+, µ0) =

l+
λ2

B

e−l+/λB

with λB = 2
3 (mB −mb) ≈ 0.32 GeV. This ansatz was mo-

tivated by a QCD sum-rule analysis [11]. With respect to
its tree-level value we observe a modest reduction of I(Eγ)
after RG resummation (solid lines) which is fairly insensi-
tive to the precise value of µ0 and only shows a mild energy
dependence. In contrast, the results obtained at one-loop
order (dashed curves) are strongly sensitive to the choice
of µ0 and exhibit a more pronounced dependence on the
photon energy.

5 Conclusions

We have applied soft-collinear effective theory to prove a
QCD factorization formula for the radiative semileptonic
decay B → γlν to all orders in perturbation theory. We
showed that, at leading power in ΛQCD/mb, the amplitude
can be written as a convolution of a perturbative, infrared-
finite hard-scattering kernel with the leading-order B-mes-
on LCDA. Additionally, we have shown that the convo-
lution integral is free of endpoint singularities and that
non-valence Fock states of the B meson do not contribute
at leading power.

Furthermore we presented the calculation of the hard-
scattering kernel in the factorization formula using renor-
malization-group improved perturbation theory. We have
established a second perturbative factorization formula ac-
cording to which the different short-distance scales ente-
ring in the calculation of the kernel can be separated into
a hard function and a jet function. The corresponding
two classes of large logarithms can be systematically re-
summed by solving evolution equations derived from the
renormalization properties of the leading-order B-meson
light-cone distribution amplitude. We found that Sudakov
resummation does not lead to a strong suppression of the
decay amplitude.

The discussion of the decay B → γlν presented here
can be taken over almost verbatim to analyze related pro-
cesses such as B → γγ and B → γ l+l−.
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